How Does Helicopters Fly? QnA

How Does Helicopters Fly?

Helicopters are the true flying machines. They can take off and land without the need for our runway. They can hover in the air it can maneuver in any direction in a 360-degree space. This Post will unveil the complexity of the science behind flying a helicopter. After going through the physics behind helicopter flying you will also understand why helicopter pilots are doing an incredibly complex job. Helicopters use the Airfoil principle to generate lift. When the blades rotate relative to the air the special airfoil shape will generate lift force and make them fly the blades derive rotation from an engine more specifically a turbo-shaft engine.

placeholder] A fully vanilla self-stabilizing single-main rotor helicopter : Besiege

The compressor sucks the air in and pressurizes its fuel is burned in this pressurized and hot air. The hot exhaust leaves the combustion chamber passes through a series of turbine stages and makes them turn. There are two sets of turbines one turbine set turns the compressor and the other set turns the helicopter rotor shaft. Jet Engines of Airplanes are used to generate thrust force. However, the primary function of the helicopter jet engine is to turn the rotor shaft. The most challenging part of helicopter operation is its controls which means how can it fly forward? how can it fly backward sideward and how can it Take a turn.

how does helicopter fly

helicopter flying

The answer is quite simple just rotate the helicopter towards the direction you want to move and just fly. When the helicopter is at an angle the Force produced by the blade is not vertical. The horizontal component of this Force will make the helicopter move in the desired direction the vertical component of the Blade Force will Balance the gravitational force. Now the real challenge is how to turn the helicopter in the desired way? To learn the science behind helicopter turning we need to learn more about the airfoil principle the lift produced by an airfoil varies with the angle of attack. Generally the greater the angle of attack the more the lift.

Now think for a moment what happens if the one blade were at one angle of attack and others were at a different angle? The lift forces acting on the blades will be different in this case. The variations in the lift forces will definitely result in a torque that can turn the helicopter. You can observe the beautiful blade motion required to achieve this non-uniform Lift Force distribution. It is clear that the blades must keep on changing the angle of attack so that at one particular location the angle of attack is always the same.

how does helicopter fly

Such complex Of the blades is easily achieved by a swash-plate mechanism. Get an exploded view and understand the basic components first. The bottom Swash-plate does not spin, but it can move and tilt as shown. A top swash plate is fitted on the bottom swash plate Via a bearing. So the top Swash-plate kid inherit all the motion of the Bottom Swash-plate while at the same time it can rotate independently. The top swash plate is attached to the rotor Shaft with the help of a driver. So the top swash plate will always move with the blades.

The blades are connected to the top swash-plate with the help of control rods. The interesting thing about this arrangement is that just by tilting the bottom swash-plate. We will be able to achieve the varying Angle Criterion of the blades. That means with this swash-plate tilt. We will always be able to maintain a positive. The angle of attack at the rear and a negative angle at the front portion of the rotor disk in short Swash-plate tilting backward produces a torque as shown. This kind of control is known as cyclic pitch now back to the basic helicopter control

how does helicopter fly

How will this torque affect the motion of the helicopter?

The most obvious answer is that the helicopter will turn forward and move as shown. Unfortunately, this answer is completely wrong. What happens, in reality, is the helicopter will turn sideward as shown this is definitely a weird effect. By applying torque in one direction to a rotating object the object turns in a Different direction. This effect is known as gyroscopic precession. Gyroscopic precession is not a new phenomenon of physics if you carefully apply Newton’s second law of motion to rotary objects.

You will be able to predict this phenomenon according to Newton’s second law Force is the rate of change of linear momentum?. Similarly, torque is the rate of change of angular Momentum. Let’s consider this rotating blade. It will have an angular momentum as shown now assume that the helicopter has tilted as shown due to some torque action if. You Victoria lee subtract the first angular momentum from the second you can figure out the torque required for this operation it. Is interesting to note that to turn the helicopter forward the torque applied should be towards sidewards that means to tilt the helicopter? Forward the Swash-plate should tilt sidewards as shown. You can again verify from Newton’s second law of motion that if you keep the front portion at a negative angle of attack and the back portion at a positive angle.

how does helicopter fly

The helicopter will simply turn sidewards. Gyroscopic precession is a truly intriguing phenomenon, but it conforms perfectly with Newton’s second law of motion if you just lift the bottom swashplate without tilting it you can see how the angle of attack of all three blades will vary by the same amount. This means that the helicopter lift Force will be the same in all three. Blades and the helicopter can move up or down without any tilt. Such blade control is known as collective pitch. If you have ever seen a helicopter you are all sure to have seen a tail rotor every single rotor helicopter needs this tail rotor for effective operation. Without the tail rotor, the helicopter fuselage would have spun as shown. This is due to a consequence of Newton’s third law of motion. To understand it let’s focus on the Force transmission part of the rotor.

We know that the rotor gets the force of rotation Via a bevel gear connected to the engine. Bevel gear Transmits Force to the rotor bevel gear as shown however according to Newton’s third law of motion the Rotor bevel gear should transmit an equal and opposite force to the engine bevel gear. This reaction force will make the whole helicopter turn opposite to the blade rotation along the helicopter center of gravity.

The function of the tail rotor is to prevent such helicopter rotation by producing a force at the tail. By properly adjusting the pitch angle of the tail rotor. Blades the Pilot can easily manipulate the tail rotor Force this way with the help of the tail rotor. The yaw motion of the helicopter can also be achieved. All the physics behind helicopter operation means that flying a helicopter is a truly challenging task minute variations in Blade Angles make huge variations in Helicopter Behavior. Often the pilot has to do two or more operations together to achieve the desired motion moreover, the helicopter does not respond instantaneously to your inputs so the pilot should possess a good sense of balance and coordination to navigate the Helicopter properly.

you will get daily free educational Posts, please support us.

Important Links:-

What is CNG? Is CNG Cars Good For Our Environment? 2020 QnA

What are hybrid and electric cars? Hybrid vs electric cars? QnA 2020

What is the NCAP Crash Test? Top 10 Car List in India with Rating.

How does ABS Work in Cars and Bikes? – Deep Details.

How Does an Electric Vehicle Work? Tesla Motors

Petrol vs Diesel Engine? Deep Details.

diesel engine how its work? QnA

Thank you!

Leave a Comment

Copy link
Powered by Social Snap